I added an arduino/SI5351 vfo that I had previously made for a dc receiver to my new bitx40 module. I tweaked the arduino code to add the offset, and added a low pass filter to the output of the SI5351. On the bitx board, I desoldered a leg of the L4 coil and plugged the output of the SI5351 to the DDS pins and it worked perfectly.
Here is the code that I used for the vfo. It still needs some cleanup and I plan to add a few more features, but it is enough to get the vfo working. It is based on code from Jason Mildrum, NT7S, Przemek Sadowski, SQ9NJE, and Tom Hall, AK2B.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
#include <Rotary.h> #include <si5351.h> #include <Wire.h> #include <LiquidCrystal.h> #define F_MIN 100000000UL // Lower frequency limit #define F_MAX 5000000000UL #define ENCODER_A 2 // Encoder pin A #define ENCODER_B 3 // Encoder pin B #define ENCODER_BTN 11 #define LCD_RS 5 #define LCD_E 6 #define LCD_D4 7 #define LCD_D5 8 #define LCD_D6 9 #define LCD_D7 10 LiquidCrystal lcd(LCD_RS, LCD_E, LCD_D4, LCD_D5, LCD_D6, LCD_D7); // LCD - pin assignement in Si5351 si5351; Rotary r = Rotary(ENCODER_A, ENCODER_B); volatile int32_t LSB = -1199950000ULL; volatile int32_t USB = -1200150000ULL; volatile int32_t bfo = -1200150000ULL; //start in usb //These USB/LSB frequencies are added to or subtracted from the vfo frequency in the "Loop()" //In this example my start frequency will be 14.20000 plus 9.001500 or clk0 = 23.2015Mhz volatile int32_t vfo = 700000000ULL / SI5351_FREQ_MULT; //start freq - change to suit volatile uint32_t radix = 100; //start step size - change to suit boolean changed_f = 0; String tbfo = ""; //------------------------------- Set Optional Features here -------------------------------------- //Remove comment (//) from the option you want to use. Pick only one #define IF_Offset //Output is the display plus or minus the bfo frequency //#define Direct_conversion //What you see on display is what you get //#define FreqX4 //output is four times the display frequency //-------------------------------------------------------------------------------------------------- /**************************************/ /* Interrupt service routine for */ /* encoder frequency change */ /**************************************/ ISR(PCINT2_vect) { unsigned char result = r.process(); if (result == DIR_CW) set_frequency(1); else if (result == DIR_CCW) set_frequency(-1); } /**************************************/ /* Change the frequency */ /* dir = 1 Increment */ /* dir = -1 Decrement */ /**************************************/ void set_frequency(short dir) { if (dir == 1) vfo += radix; if (dir == -1) vfo -= radix; changed_f = 1; } /**************************************/ /* Read the button with debouncing */ /**************************************/ boolean get_button() { if (!digitalRead(ENCODER_BTN)) { delay(20); if (!digitalRead(ENCODER_BTN)) { while (!digitalRead(ENCODER_BTN)); return 1; } } return 0; } /**************************************/ /* Displays the frequency */ /**************************************/ void display_frequency() { uint16_t f, g; lcd.setCursor(3, 0); f = vfo / 1000000; //variable is now vfo instead of 'frequency' if (f < 10) lcd.print(' '); lcd.print(f); lcd.print('.'); f = (vfo % 1000000) / 1000; if (f < 100) lcd.print('0'); if (f < 10) lcd.print('0'); lcd.print(f); lcd.print('.'); f = vfo % 1000; if (f < 100) lcd.print('0'); if (f < 10) lcd.print('0'); lcd.print(f); lcd.print("Hz"); lcd.setCursor(0, 1); lcd.print(tbfo); //Serial.println(vfo + bfo); //Serial.println(tbfo); } /**************************************/ /* Displays the frequency change step */ /**************************************/ void display_radix() { lcd.setCursor(9, 1); switch (radix) { case 1: lcd.print(" 1"); break; case 10: lcd.print(" 10"); break; case 100: lcd.print(" 100"); break; case 1000: lcd.print(" 1k"); break; case 10000: lcd.print(" 10k"); break; case 100000: //lcd.setCursor(10, 1); lcd.print(" 100k"); break; //case 1000000: //lcd.setCursor(9, 1); //lcd.print("1000k"); //1MHz increments //break; } lcd.print("Hz"); } void setup() { Serial.begin(19200); lcd.begin(16, 2); // Initialize and clear the LCD lcd.clear(); Wire.begin(); si5351.set_correction(140); //**mine. There is a calibration sketch in File/Examples/si5351Arduino-Jason //where you can determine the correction by using the serial monitor. //initialize the Si5351 si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0); //If you're using a 27Mhz crystal, put in 27000000 instead of 0 // 0 is the default crystal frequency of 25Mhz. si5351.set_pll(SI5351_PLL_FIXED, SI5351_PLLA); // Set CLK0 to output the starting "vfo" frequency as set above by vfo = ? #ifdef IF_Offset //Serial.println((long)((vfo * SI5351_FREQ_MULT) + bfo) * -1); si5351.set_freq(((vfo * SI5351_FREQ_MULT) + bfo) * -1, SI5351_PLL_FIXED, SI5351_CLK0); volatile uint32_t vfoT = abs((vfo * SI5351_FREQ_MULT) + bfo); tbfo = "USB"; // Set CLK2 to output bfo frequency si5351.set_freq( bfo, 0, SI5351_CLK2); //si5351.drive_strength(SI5351_CLK0,SI5351_DRIVE_2MA); //you can set this to 2MA, 4MA, 6MA or 8MA //si5351.drive_strength(SI5351_CLK1,SI5351_DRIVE_2MA); //be careful though - measure into 50ohms //si5351.drive_strength(SI5351_CLK2,SI5351_DRIVE_2MA); // #endif #ifdef Direct_conversion si5351.set_freq((vfo * SI5351_FREQ_MULT), SI5351_PLL_FIXED, SI5351_CLK0); #endif #ifdef FreqX4 si5351.set_freq((vfo * SI5351_FREQ_MULT) * 4, SI5351_PLL_FIXED, SI5351_CLK0); #endif pinMode(ENCODER_BTN, INPUT_PULLUP); PCICR |= (1 << PCIE2); // Enable pin change interrupt for the encoder PCMSK2 |= (1 << PCINT18) | (1 << PCINT19); sei(); display_frequency(); // Update the display display_radix(); } void loop() { // Update the display if the frequency has been changed if (changed_f) { display_frequency(); #ifdef IF_Offset //Serial.println((long)((vfo * SI5351_FREQ_MULT) + bfo) * -1); si5351.set_freq(((vfo * SI5351_FREQ_MULT) + bfo) * -1, SI5351_PLL_FIXED, SI5351_CLK0); //you can also subtract the bfo to suit your needs //si5351.set_freq((vfo * SI5351_FREQ_MULT) - bfo , SI5351_PLL_FIXED, SI5351_CLK0); if (vfo >= 10000000ULL & tbfo != "USB") { bfo = USB; tbfo = "USB"; si5351.set_freq( bfo, 0, SI5351_CLK2); Serial.println("We've switched from LSB to USB"); } else if (vfo < 10000000ULL & tbfo != "LSB") { bfo = LSB; tbfo = "LSB"; si5351.set_freq( bfo, 0, SI5351_CLK2); Serial.println("We've switched from USB to LSB"); } #endif #ifdef Direct_conversion si5351.set_freq((vfo * SI5351_FREQ_MULT), SI5351_PLL_FIXED, SI5351_CLK0); tbfo = ""; #endif #ifdef FreqX4 si5351.set_freq((vfo * SI5351_FREQ_MULT) * 4, SI5351_PLL_FIXED, SI5351_CLK0); tbfo = ""; #endif changed_f = 0; } // Button press changes the frequency change step for 1 Hz steps if (get_button()) { switch (radix) { case 1: radix = 10; break; case 10: radix = 100; break; case 100: radix = 1000; break; case 1000: radix = 10000; break; case 10000: radix = 100000; break; case 100000: radix = 1; break; } display_radix(); } } |
I found this circuit for an s meter and put it together on a small breadboard and used an old s/swr meter. It works okay, but it needs some work. I will probably add an swr bridge and use the same meter for both.
I still need to put it all together in a box. I looked at buying a bending brake and some sheet metal, but it was just too pricey for me at the moment. I did find an old rack mount firewall that has a built in 12v power supply that I may try to use if I can fit everything inside.
Comments closed